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Chaotic Systems

Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?
Small (numerical) error explodes along time!
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Chaotic Systems

Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?
Small (numerical) error explodes along time!

• Many physics systems are chaotic.

• Long-term behavior/ statistics is of great practical importance in applications.

Climate Modeling Aircraft Design
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Chaotic Systems

• Long-term behavior/ statistics is of great practical importance in applications.

Method 1: Fully-Resolved Simulations (FRS): simulate with sufficiently fine
spatiotemporal meshes/grids. Too Expensive!

Method 2: Coarse-grid simulations (CGS) (?)

Need special modifications of the dynamic

Coarse-graining, Reduced-order modeling,

Closure Modeling, etc.

(Terminologies from different areas)



Fully-Resolved

Coarse-grained
Dynamics 

[Remark]

• Long-term trajectory: meaningless and impossible.

• Long-term statistics: meaningful, possible.

How to give good estimations of long-term stats with CGS (limited computing resources)?



Outline

• (1) Problem formulation: long-term statistics & coarse-grid simulations.

• (2) Limitation of Closure Models: Non-uniqueness issue

• (3) Theoretical Perspective via Measure Flow: 
• Learning-based closures: impractical reliance on hi-fidelity data.

• (4) Coarse-graining with Neural Operator

• (5) Conclusion & Future Direction & Discussion
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Main Results

• (1) Fundamental Shortcoming of Closure Modeling Scheme (explicit additive closures): 
The target mapping is non-unique (multi-map). 

Incorporating memory and randomness can not resolve the issue.

• (2) The amount of hi-fid data required for training a closure model suffices to estimate 
statistics well. No more need to train a closure model!

• (3) We need nonlinear interactions between different scales.

Neural operators provide a solution. (Learn the solution operator)

Relatively accurate per-step prediction is enough for long-term statistics.

7



Outline

• (1) Problem formulation: long-term statistics & coarse-grid simulations.

• (2) Limitation of Closure Models: Non-uniqueness issue
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• Learning-based closures: impractical reliance on hi-fidelity data.

• (4) Coarse-graining with Neural Operator

• (5) Conclusion & Future Direction & Discussion
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[Dynamics, Attractor, and Statistics]
• A nonlinear (and chaotic) dynamics ௧

• ௧ the semigroup (of the true dynamics) 

• ‘Trajectory’: ௧ ௧∈ோಱబ
  

• Attractor: 
௧→ஶ

• Invariant measure ∗

்→ஶ

ଵ

் ௌ ௧ ௨
்


(independent of the initial )

• Measure in function space

• Supported on 

• Statistics: For a functional the stat ௨∼ఓ∗
∗

Problem Setting

The Goal.

Lorenz Attractor



• Filtering operator , e.g. spatial down sampling, Fourier-mode truncation.
(Simulations with coarse grids)

Coarse-grid Simulations

Nonlinear dynamics: ௧ ( function space of interest)

[Coarse-graining] (CG): ௧ .

Target: design a vector field (operator) in the reduced space.



• Filtering operator , e.g. spatial down sampling, Fourier-mode truncation.
(Simulations with coarse grids)

Coarse-grid Simulations

Nonlinear dynamics: ௧ ( function space of interest)

[Coarse-graining] (CG): ௧ .

Dynamics of : ௧

(nonlinear system and does not commute)

Simulating on low-res grids (the space of ) no access to

[Closure Model]: Evolve ௧

CG Ansatz:  
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How to Design Closure Models?

Dynamic Smagorinsky Model

[(Handcraft) Classical Methods]

• Strong Physics Intuition.

• Mathematical Simplifications.
• E.g. Assume clear scale-separations 

• Ideal/Limit cases: Kolmogorov microscales. ( Reynolds number, isotropic homogeneous).

[Data-driven Closure Models]

• Single-state Models

• History-aware Models

• Stochastic Closure Models

• Different Loss function, model architecture, ansatz …



Existing Data-driven Closure Models

[CGS]: Evolve ௧

Dynamics of : ௧

Supervised Learning

Training data  : comes from costly Fully-Resolved simulations input-output pairs

History-aware models: ଷ ଷ

  

A priori Loss function

Posteriori Loss function

Single-state model: ௗ ௗ

Stochastic closure models



Outline

• (1) Problem formulation: long-term statistics & coarse-grid simulations.

• (2) Limitation of Closure Models: Non-uniqueness issue

• (3) Theoretical Perspective via Measure Flow: 
• Learning-based closures: impractical reliance on hi-fidelity data.

• (4) Coarse-graining with Neural Operator

• (5) Conclusion & Future Direction & Discussion
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[Closure Model]: Evolve ௧

• [Thm 1-1 (Single-state)] The target mapping is not well-defined for all types 
of ansatz in the literature. (There are multiple possible outputs for the same input.) 

• The approximation error has a lower bound independent of the model complexity.



Attractor

Filtered Attractor

Filter: 

Reduced Space 
(Coarse-grid System)

Full Space 

Which direction to go?



Attractor

Filtered Attractor

𝟏

𝟐

𝟏

𝟐

𝟏

𝟐

Prediction
using a closure model

Filter: 

Reduced Space 
(Coarse-grid System)

Full Space 



[Closure Model]: Evolve ௧

• [Thm 1-2 (History-aware)] (For PDE systems) For any and finite τ, there exist 
infinite u′ H such that for all t [0,τ). 

𝒕 𝒕ழ𝒕ᇱ are all the information I could use 
to decide which direction to move 

at moment ᇱ !



[Closure Model]: Evolve ௧

• [Thm 1-3 (Stochastic closures)] One cannot obtain the best approximation of µ
among distributions supported in the reduced space if  there is additive randomness in 
the evolution of dynamics.

Parameters governing stochasticity tend to diminish after training.

Incorporating randomness in the closure model might be redundant.



Outline

• (1) Problem formulation: long-term statistics & coarse-grid simulations.

• (2) Limitation of Closure Models: Non-uniqueness issue

• (3) Theoretical Perspective via Measure Flow: 
• Learning-based closures: impractical reliance on hi-fidelity data.

• (4) Coarse-graining with Neural Operator

• (5) Conclusion & Future Direction & Discussion
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Review: Goal = long-term stats
• Long-term trajectory: meaningless and impossible.

• Long-term statistics: meaningful, possible.

How to give good estimations of long-term stats with CGS (limited computing resources)?

[Rethinking]

• What is the best we can achieve with coarse-grid simul.?

• How to achieve that?

• Empirical results for existing methods still look good?

• CG Ansatz in closure modeling:  . Alternative ansatz?
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Review: Goal = long-term stats
• Long-term trajectory: meaningless and impossible.

• Long-term statistics: meaningful, possible.

How to give good estimations of long-term stats with CGS (limited computing resources)?

Check directly how the distribution /measure evolves.

Liouville equation / Fokker-Planck eqn. for measures in function spaces.

Check the stationary (Liouville / F-P) equation for the limit distribution!
Analyze the convergence of different CG ansatz.



Formulations
• Dynamics ௧

• Coarse-graining: Filtering operator . (linear, finite-rank)

• Reduced space: : finite-dim linear subspace of .

• ୄ:  

• ONB   .  

• Canonical isometric isomorphism : ஶ ଶ :  

• Denote ଵ ଶ ௗ ௗାଵ

• The nonlinear dynamics becomes: 
ௗ

ௗ௧
is an inf-dim vector field (function).

• Example:  Fourier basis (or sin & cos to avoid complex number)

• Kuramoto–Sivashinsky : ௧
ଶ ସ

௫,

• . 
ସ ଶ

  ାୀ 23



Formulations
• ୄ:  

• ONB   .  

• Canonical isometric isomorphism : ஶ ଶ :  

• Denote ଵ ଶ ௗ ௗାଵ (View , as the same)

• The nonlinear dynamics becomes: 
ௗ

ௗ௧
is an inf-dim vector field (function).

•

ௗ௩

ௗ௧ 

ௗ௪

ௗ௧ ௨

 ଵ ௗ ௨ ௗାଵ

• Evolution: ௧ 

• Invariant measure ∗ (in ): 
∗ =0

24
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[Rethinking]

• What is the best we can achieve with coarse-grid simul.?

• ଵ marginal distribution of .

• Equivalent to #
∗, orthonormal projection onto .   (Typically ).

• [Optimal CG dynamics]

•

ௗ௩

ௗ௧ 

ௗ௪

ௗ௧ ௨

௧  ,

check the evolution of ଵ

• Evolution: ௧ ଵ

• CG dynamics:
J Langford and R Moser. “Optimal LES formulations 
for isotropic turbulenc’’, 1999.
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• [Optimal CG dynamics]

•

ௗ௩

ௗ௧ 

ௗ௪

ௗ௧ ௨

௧  ,

check the evolution of ଵ

• Evolution: ௧ ଵ

• CG dynamics:

Unfortunately, not useful in practice: depends on simul in 
The only information can be used at state time f  

ఛஸ௧ different from ఛஸ௧!

CG dynamics should have the form 
ௗ௩

ௗ௧ ∗ (or ∗ ).



Effective Optimal CG Dynamics
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What are date-driven closure models learning?

Resulting mapping: ௨∼𝝁ෝ𝒅𝒂𝒕𝒂
.

Empirical measure of the hi-fid datapoints (functions/snapshots)



Paradox: No need to train a closure model – the training data itself is enough!

Cannot generalize. Different domain, boundary condition, coefficient (e.g. Reynolds
number).

[Rethinking]

• Empirical results for existing methods still look good?



Outline

• (1) Problem formulation: long-term statistics & coarse-grid simulations.

• (2) Limitation of Closure Models: Non-uniqueness issue

• (3) Theoretical Perspective via Measure Flow: 
• Learning-based closures: impractical reliance on hi-fidelity data.

• (4) Coarse-graining with Neural Operator

• (5) Conclusion & Future Direction & Discussion
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What is going wrong with closure model?

Nonlinear dynamics: ௧ ( function space of interest)

[Coarse-graining] (CG): ௧ .

[Closure Model]: Evolve ௧

CG Ansatz:  

Separate roles: large-scale info/evolution  fine-scale info

• Clear scale-separations:

• Information from different scales are highly-entangled:

• We need nonlinear interactions between scales!



(Fourier) Neural Operator

The input can be either course-grid or fine-grid.
All viewed as discretization of an inf-resolution function.

Li et al. Fourier Neural Operator 
for Parametric Partial Differential 
Equations, 2021



Neural Operator for Coarse-Graining
[Property]

• The input can be either course-grid or fine-grid.

• All viewed as discretization of an inf-resolution function.

[Method]

• Train a neural operator ఏ to approximate the solution operator (semigroup).

• ఏ ழ௧ஸ , : parameter.

• Taking coarse-grid input ,  ఏ , ఏ ఏ ௧ୀ , ఏ ఏ ఏ ௧ୀ ௧ୀ



𝒄𝒍𝒐𝒔𝜽

(b) After training (b) After training(a) Training

(c) Inference during coarse-grid simulation (c) Inference during coarse-grid simulation

(a) Training

𝓐

+

𝑢ത(𝑡) 𝒜𝑢ത + 𝑐𝑙𝑜𝑠ఏ(𝑢ത)

𝒜ሚ
ఏ𝑢ത

(I) Previous closure modeling framework: 
 𝒜𝑢ത + 𝑐𝑙𝑜𝑠ఏ(𝑢ത)

(II) New framework with nonlinear interaction 
between different scales: 𝒜ሚ

ఏ𝑢ത

+

𝓐

𝑢(𝑡) 𝜕௧𝑢

𝒄𝒍𝒐𝒔𝜽

𝒄𝒍𝒐𝒔𝜽

𝑴𝒐𝒅𝒆𝒍𝜽

Artifact

High-frequency/
small-scale information

Low-frequency/
large-scale information No information

𝑢, 𝑢′ : Full-scale functions     𝑢ത : Filtered function (⋅): Filter operator

Information 
mismatch

Weights storing 
unresolved small-
scale information

Weights storing 
information from 
all scales

𝑢(𝑡) 𝜕௧𝑢

𝑴𝒐𝒅𝒆𝒍𝜽

𝑴𝒐𝒅𝒆𝒍𝜽

𝜕௧𝑢′𝑢ത(𝑡) 𝑢′(𝑡) 𝜕௧𝑢′

Infinitesimal generator: 
௧→

ଵ

௧ ௧
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Convergence Guarantee

 Large time steps – Faster convergence to the attractor.

An imperfect neural operator is fine!

Perusing small per-step error is enough.

 Good estimation for any long-term statistics!
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Convergence Guarantee

 Important component of the proof:

[Property](Resolution-Invariance of FNO) For any  , there exists 
such that ;  . The CGS is consistent with trajectory from .

[Thm](Moore) For any , any initialization ,
→ஶ

ଵ

ே 

. Large time step does not harm performance.

 Even if the simulation is deviating far away from original traj, it is consistently close to a traj and the
error of resulting statistics have an upper-bound.

[Thm](Shadowing Lemma) In hyperbolic set of 𝑆௧, for any , there exists such that 
if a sequence  satisfies  ାଵ for all then there exists 
such that  for all n.
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Practical Algorithm: Physics-informed Neural Operator

 Limited fully-resolved data.

The equation contains all the information!

 Training with physics-informed loss.
Random input functions. (Free!)

 Supervised learning (fitting input-output data).
Data pairs from fully-resolved simulation. (Accurate, expensive, scarce)

 Supervised learning (fitting input-output data).
Data pairs from coarse-grid simulation. (Inaccurate, cheap)
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Evaluation: what is a good metric?

 RMSE (relative error) is meaningless!

𝒖𝟏

𝒖𝟐

𝒖𝟏.
=𝒖𝟐

Filter ℱ

Full Space

Coarse-grid 
system

t

Sufficiently small 𝑡: error not 
yet exaggerated. 

Chaotic system: unpredictable (and non-unique) in 𝐹(𝐻).
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Evaluation: what is a good metric?

 RMSE (relative error) is meaningless!

Statistics are not comprehensive.

Directly compare the measure. Compare limit distribution from CGS and ଵ
∗ .



39

Evaluation: what is a good metric?

 RMSE (relative error) is meaningless!

Statistics are not comprehensive.

Directly compare the measure. Compare limit distribution from CGS and ଵ
∗ .

2D Kolmogorov Flow (Reynolds number ସ )

Compute marginal distribution over each basis function .

Total variation error of each marginal distribution.
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All ML method are trained with same
fully-resolved dataset. ( ଶ snapshots.)



1. Require large number of FRS data (which are not available usually).

2. Require a coarse-grid solver (can be even faster).

3. Cannot give the optimal estimations of statistics in ideal case, i.e. perfect training.

Summary

Re: Reynolds number

41



Outline

• (1) Problem formulation: long-term statistics & coarse-grid simulations.

• (2) Limitation of Closure Models: Non-uniqueness issue

• (3) Theoretical Perspective via Measure Flow: 
• Learning-based closures: impractical reliance on hi-fidelity data.

• (4) Coarse-graining with Neural Operator

• (5) Conclusion & Future Direction & Discussion
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Takeaway Messages
Always remember the goal: long-term statistics instead of transient trajectory.

 Closure Modeling approach: fundamental shortcoming unless special structure of
the system.
Non-uniqueness issue.

 Impractical reliance on high-fidelity data.

A systematic way to verify convergence through functional measure flow.

More promising to have implicit nonlinear interactions between different scales.

Neural Operator as a CG approach.

43



Future Directions
 How much data do we need from fully-resolved simul?

Tradeoff: Time cost for generating data vs. time cost for tuning parameters.

Guide for practitioners: the more, the better.

Advanced optimization techniques for minimizing physics-informed loss.

A unified model that generalizes.
 Input=[initial condition] input= concatenate[initial, boundary, force, coeff, geometry]

Advanced model architectures.
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Thanks!
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Check more details at  https://arxiv.org/abs/2408.05177
Beyond Closure Models: Learning Chaotic-Systems via Physics-Informed Neural Operators


