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• Nonlinear dynamics: ௧ ( function space of interest)

• [Goal]: Long-term statistics of this dynamics.

• Chaotic system DNS (Direct numerical simulations): too expensive!

• Filtering operator , e.g. spatial down sampling, Fourier-mode truncation.
(Simulations with coarse grids)

Dynamics for : ௧

(nonlinear system F and L does not commute)

Simulating on low-res grids (the space of ) no access to

[Closure Model]: Evolve ௧

Problem Setup



Dynamics for : ௧

(nonlinear system F and L does not commute)

Simulating on low-res grids (the space of ) no access to

[Closure Model]: Evolve ௧

Closure Model

Why do we have to adopt this form?
(An explicit decomposition of ‘error term’ and the equation)

Is it reasonable or good enough?

How to design these models?



[Closure Model]: Evolve ௧

Main Results

Why do we have to adopt this form?
Is it reasonable or good enough?

How to design these models?

• The target mapping is not well-defined for all types of ansatz in the 
literature. (There are multiple possible outputs for the same input.) 

• Handcraft models: ‘more of an art than a science’

• Data driven models: (We prove that) have to be trained with a large number of DNS 
data that suffices to compute the statistics.

We no longer need such a model!



[Closure Model]: Evolve ௧

Main Results (cont’d)

Why do we have to adopt this form?

• New scheme: Evolve ௧

• Intuition: the error-correcting term is implicitly involved in the simulation.

[Method]

• Physics-informed Neural Operator

• Provable convergence guarantee for statistics.

Much fewer DNS data needed Ansatz for 
Merit: resolution invariance
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Basic Assumptions in this work: existence and uniqueness of the attractor.



Numerical Methods

• LES (Large eddy simulation)

Data-Driven Methods

• Learning (implicit) closure term/error of model

• Via conditional sampling (and Diffusion Model)

• FNO



Numerical Methods

• LES (Large eddy simulation)

Data-Driven Methods

• Learning (implicit) closure term/error of model

• Via conditional sampling (and Diffusion Model)

• FNO

Evolve with 
small 

Need a large 
number of 
DNS traj for 
training

Preview

Could never achieve optimal estimation even 
with perfect training/optimization.

Our Method (PINO)



LES
The nonlinear dynamics ௧ (In following discussions, we ignore the

difference between DNS and true trajectory)

Evolve on low-res grid: outcome of a linear filter ஽ ௗ

Alternative understanding: Filter operator in function space: . (Intuitive
example: spectral method and Fourier truncation)

The dynamics for : ௧

(F and L does not commute due to nonlinearity)

Since we are simulating on low-res grids (the space of ), we don’t have access
to

[LES]: Evolve ௧

D: num of DNS grids     d: num of LES grids



Closure model

[LES]: Evolve ௧

Handcraft Model:

Sub-grid Stress (SGS) model (at most 11parameter), 

e.g. Smagorinsky model for Navier Stokes

Learned Model:

(1)Fix an ansatz 

(2) Supervised loss: 

(3*) More complex version:



Closure model

[LES]: Evolve ௧

Handcraft Model:

Sub-grid Stress (SGS) model (at most 11parameter)

Learned Model:

(1)Fix an ansatz 

(2) Supervised loss: 

(3*) More complex version: (history information)

ଷ ଷ

ଷ ଷ

଴ ଴ ଴

Better expressive power;

Relies on solver to start (for )



(1) This is not a well-defined mapping.

(2) The resulting coarse-grid simulation might deviate from the filtered attractor. 

(And the performance highly depends on the training data)
! We can only assign one moving direction in the reduced space F(H).



If restricted to the subspace, deterministic vector filed(closure model) is weird!

ଷ ଷ

଴ ଴ ଴

(3*) More complex version: (history information)

Would historical information helps?

[Thm] For any finite , any initialization , there exists 
infinite instances of such that

: semigroup of the dynamics,

𝑭 𝑺𝒕𝒖 𝒕ழ𝒕ᇱ are all the information I could 
use to decide next step’s direction at 

moment 𝒕ᇱ !



Optimal LES

Optimal LES formulations for isotropic turbulence, 1998

From an probabilistic viewpoint:

• Decompose the fluid field into resolved part(in coarse grid) and unresolved part:

e.g. ஽ ௗ ஽ିௗ or ୄ:  

• The distribution of a joint distribution of 

• In LES setting, given , what is the best choice for vector field/closure term?

• Conditional Expectation!

• The optimal closure model is 

(**) Expectation w.r.t. which distribution?



Neurips 2023

Idea: Train a generative model (via an SDE in latent space)

1. Given , sample .  

2. Compute conditional expectation.



Fourier neural operator for large eddy simulation 
of compressible Rayleigh-Taylor turbulence, 2024

FNO

 Leverage the resolution-invariant property of FNO to capture motions in
unresolved space (high Fourier modes)

[Drawbacks]

FNO is trained through supervised learning and is thus vulnerable to distribution
shift.

 Training material in practice: solver data evolved on coarse grid.

Training data in the paper: down sampling of training data from fine grid.



1. Require large number of DNS data (which are not available usually).

2. Require a coarse-grid solver (can be even faster).

3. Cannot give the optimal estimations of statistics in ideal case, i.e. perfect training.

Summary

Re: Reynolds number
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What is our goal?
• Obtain good estimations of long-term statistics with simulations only conducted on 

coarse grids.

Let’s make it precise!
• A nonlinear (and chaotic) dynamics ௧

• ௧ the semigroup (of the true dynamics)

• ‘Trajectory’: ௧ ௧∈ோಱబ
  

• Attractor: 
௧→ஶ

• Invariant measure ∗

்→ஶ

ଵ

் ௌ ௧ ௨
்

଴
(independent of the initial )

• Measure in function space

• Supported on 

• Statistics: For a functional the stat ௨∼ఓ∗
∗



What is invariant measure ?

What is the best approximation of with finite grid?

What are previous methods doing?

Stationary solution of a Liouville equation (in function space).

Pushforward of ∗ of the filtering (informal).

Assign a vector field in the reduced space F(H), which always have the 
form of a conditional expectation.

Previous method can not give good result in good estimations of statistics 
unless the model is trained with a large number of DNS data with which one 
can actually directly estimate the statistics. (informal)



Functional Liouville (Measure) Flow
• ୄ:  

• ONB ௜ ௜

• Canonical isometric isomorphism : ஶ ଶ : ௜ ௜௜

• Denote ଵ ଶ ௗ ௗାଵ

• The nonlinear dynamics becomes: 
ௗ௖

ௗ௧
is an inf-dim vector field (function).

• Example: ௜ Fourier basis (or sin & cos to avoid complex number)
KS: ௧

ଶ ସ
௫, ௞

ସ ଶ
௞ ௝ ௟௝ା௟ୀ௞

• We start with ‘particles’ #
଴ . 

• Each particle evolves and generates a traj

• the prob density of 

• [Liouville Eqn] ௧ ௖ ଴

• (Denoted as ௧ )



Invariant Measure

• Invariant measure: (Cesaro) limit of 
ଵ

௧

௧

଴
.

• Eqn for ௧
ଵ

௧ ଴

• The density of ∗ is the solution to (Denoted as ∗)
(usually in weak sense)

Best Approximation in the Filtered Space

[Thm] = . 

The functional Wasserstein distance is defined with cost function ଵ ଶ ு
ଶ .

Note: #
∗ can also be viewed as the marginal distribution of ∗ in first - dim.

Def the orthogonal projection. (might be different from ).



Let’s write out the Eqn! (for )
• ଵ #

• ௧ ଵ ௨ෝ ଵ ଵ
௣ ௨ෝ,௩ො,௧

∫ ௣ ௨ෝ,௩ො,௧ ௗ௩ො

= ௨ෝ ଵ ௩ො∼௣(௩ො|௨ෝ,𝒕) ଵ

•
ௗ௨ෝ

ௗ௧ ௩ො∼௣(௩ො|௨ෝ,𝒕) ଵ (The ‘optimal’ dynamics in ).

𝑏ଵ 𝑢ො, 𝑣ො : the first d-dim of 𝑏. 



Let’s write out the Eqn! (for )

It is irresolvable!
The depends on and initial condition/density, and an (evolving) distribution 
in ୄ, but at the point , or more generally ଴ , I 
don’t know what is happening in ୄ and what happened seconds ago! 

The only performable action is to compute conditional expectation 
w.r.t an fixed distribution 

• ଵ
#

• ௧ ଵ ௨ෝ ଵ ଵ
௣ ௨ෝ,௩ො,௧

∫ ௣ ௨ෝ,௩ො,௧ ௗ௩ො

= ௨ෝ ଵ ௩ො∼௣(௩ො|௨ෝ,𝒕) ଵ

•
ௗ௨ෝ

ௗ௧ ௩ො∼௣(௩ො|௨ෝ,𝒕) ଵ (The ‘optimal’ dynamics in ).



Let’s write out the Eqn! (for )

ௗ௨ෝ

ௗ௧ ௩ො∼୯(௩ො|௨ෝ) ଵ (The surrogate dynamics in ).

Write out the Liouville equation in reduced space : ௧ ଵ ௤ ଵ

Limit distribution: ௤ ଵ

[Basic Requirement: Consistency]: ௤ ଵ
∗ . (Faithfully recover the optimal measure)

The choice for : ∗ .

• The ideal and realistic closure model: 
ௗ௨ෝ

ௗ௧ ௩ො∼௣∗(௩ො|௨ෝ) ଵ

The only performable action is to compute conditional expectation 
w.r.t an fixed distribution 



Previous Methods Revisit Ideal: 
ௗ௨ෝ

ௗ௧ ௩ො∼௣∗(௩ො|௨ෝ) ଵ

௧ ௩∼்#௣∗(௩|௨)

Not Expressive Enough?

[Fact] Minimizing ு-loss is 
equivalent to choosing ௗ௔௧௔

[Paradox] ∗ is inf-dim in nature, so approximating it with sampling is very costly!

(1) The DNS data suffices to approximate ∗ well: no longer need LES!

(2) The DNS data is not enough: ௗ௔௧௔ is far from ∗, thus the limit distribution could 
be rather fallacious!



Previous Methods Revisit

What about random sampling method?
Write out the PDE of density evolution

(Fokker-Planck this time)

Unfortunately…

[Thm] It could never recover ∗ or ଵ
∗

unless the stochastic term in SDE is 0! (i.e.
It’s a deterministic method).
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Model Architecture of FNO



What makes FNO different?

(!!!!)Resolution Invariant!
Long time-step prediction.

 The input could be either on coarse grids or fine grids ( function)

[Thm] Suppose we have trained a perfect neural operator, then it could
recover the optimal approximation of invariant measure, i.e. ଵ

∗ # ∗

Key Insights:

• Neural operator G ଴ ଴ ௧∈[௧బ,௧బା௛] )

• An perfect NO: If input is a function , then ௛

• What happens if the input is ௡ (functions represented on coarse grid)?

• There exists ᇱ
௡

ᇱ
௡ ௛

ᇱ . (From FNO architecture)

• ∗ does not depends on trajectories!

Notation:

௡
௡

ଵ ଶ ௡

Function values on grids.



How to obtain a perfect FNO?

[Fact] For any non-vanishing , if , then 
is a perfect FNO, where the PDE loss 

Remarks:

• Does not depend on data distribution

• Does not rely on DNS(ground truth) data.

In practice, it is hard to achieve 0-loss.
[Thm] For , , s.t. if , 

then . ೘
ಿ

.



Practical Algorithm

[Algorithm]

Supervised learning with LES data.

Supervised learning with DNS data (very few).

Minimizing the PDE loss function.

[Fact] For any non-vanishing , if ௨∼ఊ ௉஽ா , then is a 
perfect FNO, where the PDE loss ௧ ு

ଶ

Remarks:

• PDE-loss is super hard to optimize!

• Solution: find a good initialization with the help of data.
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1D Kuramoto–Sivashinsky (toy test example)

• Viscosity: 0.01     L: 

• DNS: 1024 spatial grid

• LES: 128 spatial grid

• Note: baseline methods are trained with the same number of DNS data as ours.

Energy Spectrum Correlation           Velocity     Total Variation of each mode



2D Kolmogorov Flow (toy test example)

• Reynolds number: 100     L: 

• DNS: 128*128 spatial grid

• LES: 16*16 spatial grid

• Note: baseline methods are trained with the same number of DNS data as ours.

Energy Spectrum Vorticity     Total Variation of each mode





Summary

[Closure Model]: Evolve ௧

• [Operator Learning]

• New scheme: Evolve ௧

• Where is the missing information (error correcting term)? 

-They (their effects) are incorporated in the model.

• Intuition: the error-correcting term is implicitly involved in the simulation.



Thanks!


