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Problem Setup

* Nonlinear dynamics: d;u = Lu,u € H (H: function space of interest)
* |Goal]: Long-term statistics of this dynamics.

* Chaotic system ‘ DNS (Direct numerical simulations): too expensive!

* Filtering operator F: u — u, e.g. spatial down sampling, Fourier-mode truncation.
(Simulations with coarse grids)

»Dynamics for u: 0;u = Lu + (FL — LF)u.

(nonlinear system === F and L does not commute)
» Simulating on low-res grids (the space of F(H)) === no access to u.
»[Closure Model]: Evolve d,u = Lu + clos(ii; 0)



Closure Model
»Dynamics for u: 0;u = Lu + (FL — LF)u.
(nonlinear system === F and L does not commute)
» Simulating on low-res grids (the space of F(H)) ===pno access to u.
»[Closure Model]: Evolve 0, = Lu + clos(u; 0)

Why do we have to adopt this form?

(An explicit decomposition of ‘error term’ and the equation)

Is it reasonable or good enough?

How to design these models?



Main Results
»[Closure Model]: Evolve 0;,u = Lu + clos(u; 0))
Why do we have to adopt this form?
Is it reasonable or good enough?

* The target mapping clos(u) is not well-defined for all types of ansatz in the
literature. (There are multiple possible outputs for the same input.)

How to design these models?

* Handcraft models: ‘more of an art than a science’

* Data driven models: (We prove that) have to be trained with a large number of DNS
data that suffices to compute the statistics.

= We no longer need such a model!



Main Results (cont’d)
»[Closure Model]: Evolve 0, = Lu + clos(u; 0)

Why do we have to adopt this form?

* New scheme: Evolve d;u = L(0)u
* Intuition: the error-correcting term is implicitly involved in the simulation.
[Method]

* Physics-informed Neural Operator

Much fewer DNS data needed Ansgtz for L(,H) _ ,
Merit: resolution invariance

* Provable convergence guarantee for statistics.



Outline

* (1) Review: previous methods

Basic Assumptions in this work: existence and uniqueness of the attractor.



Numerical Methods
* LES (Large eddy simulation)

Data-Driven Methods

* Learning (implicit) closure term/error of model

* Via conditional sampling (and Diffusion Model)
* FNO



Preview

Numerical Methods

* LES (Large eddy simulation) 7

Data-Driven Methods

* Learning (implicit) closure term/error of model

- Evolve with
small At

* Via conditional sampling (and Diffusion Model)

* FNO

Our Method (PINO)

Need a large
— number of
DNS traj for

training

Could never achieve optimal estimation even

with perfect training/optimization.




LE S D: num of DNS grids  d: num of LES grids

» The nonlinear dynamics d,u = Lu,u € H (In following discussions, we ignore the
difference between DNS and true trajectory)

>Evolve on low-res grid: outcome of a linear filter F: H(or R?) - R%:u — @

» Alternative understanding: Filter operator in function space: H — H. (Intuitive
example: spectral method and Fourier truncation)

»The dynamics for u: 0;u = Lu + (FL — LF)u.
(F and L does not commute due to nonlinearity)

»Since we are simulating on low-res grids (the space of F(H)), we don’t have access
to u.

»[LES]: Evolve 0;u = Lu + clos(u; 0)

'Closure model’



Closure model
»[LES]: Evolve 0,u = Lu + clos(u; 0)

Handcraft Model:
Sub-grid Stress (SGS) model (at most 11parameter),

¢.g. Smagorinsky model for Navier Stokes

Learned Model:
(1)Fix an ansatz clos(u; 6)

(2) Supervised loss: ||(FL — LF)u — clos(Fu; 9)||

(3*) More complex version:



Closure model

»[LES]: Evolve 0;u = Lu + clos(u; 6) clos: H(R3) —» H(R3)

Handcraft Model:
Sub-grid Stress (SGS) model (at most 11parameter)

Learned Model:

(1)Fix an ansatz clos(u; 6)

(2) Supervised loss: ||(FL — LF)u — clos(Fu; 9)||
(3*) More complex version: (history information)

clos: H(R?® x [0,t")) - H(R?)

Better expressive power; ,
u(x,t),x €D, t € [ty — t,ty) — clos(u)(x,ty)

Relies on solver to start (for[0, t'])



H |

‘ Attractor Q
I
I
F (filter) y
I

Filtered

Attractor F(Q)

T(}[) F(Auq) Prediction

(1) This is not a well-defined mapping.
(2) The resulting coarse-grid simulation might deviate from the filtered attractor.
(And the performance highly depends on the training data)

! We can only assign one moving direction in the reduced space F(H).



If restricted to the subspace, deterministic vector filed(closure model) 1s weird!

(3*) More complex version: (history information)
clos: H(R?® x [0,t")) - H(R?)
u(x,t),x € D,t € [ty —t',ty) — clos(u)(x,ty)

Would historical information helps?

[Thm] For any finite ty, T > 0, any initialization u € H, there exists
infinite instances of v € H, such that F(S;v) = F(S;u), Vt € [t,, T].
S¢: semigroup of the dynamics, uy(x) = u(t, x)

{F(S;u)};<: are all the information | could
use to decide next step’s direction at

moment t’ !




Optimal LES

From an probabilistic viewpoint:

* Decompose the fluid field into resolved part(in coarse grid) and unresolved part:
eg. RP=R*xRPCorH=FH)DFH)': u=u+v

 The distribution of u a joint distribution of (u, v).

* In LES setting, given u, what 1s the best choice for vector field/closure term?
* Conditional Expectation!

* The optimal closure model is E[L(u)|u]

(**) Expectation w.r.t. which distribution?

Optimal LES formulations for isotropic turbulence, 1998



Neural Ideal Large Eddy Simulation: Modeling
Turbulence with Neural Stochastic Differential
Equations

The evolution of the ideal LES field v is obtained from the time derivatives of the set of unfiltered
turbulent fields whose large scale features are the same as v [48]:

v ou
at ”'[52
Idea: Train a generative model (via an SDE 1n latent space)

ﬁ:v] @)

1. Given u, sample v, or equivalently, u.

2. Compute conditional expectation.

Neurips 2023



FNO

Fourier neural operator for large eddy simulation
of compressible Rayleigh-Taylor turbulence, 2024

» Leverage the resolution-invariant property of FNO to capture motions in
unresolved space (high Fourier modes)

» |[Drawbacks]

»FNO is trained through supervised learning and is thus vulnerable to distribution
shift.

» Training material in practice: solver data evolved on coarse grid.

» Training data in the paper: down sampling of training data from fine grid.



Summary

Optimal High-res. training data ;
bethes statistics  DNS Snapshots | Trajs. Conplexity
Fully-resolved Simulation, e.g., DNS [33, 34] v/ 5 Re3-52
Coarse-grid Simulation, e.g., LES |33, 34] X - Re248
Single-state model |28] X 24000 | 8 Re2-48
History-aware model|35] X 250000 | 50 Re248
Latent Neural SDE|32] X 179200 | 28 + Rel 86
Physics-Informed Operator Learning (Ours) v 110 | 1 Rel-86

Re: Reynolds number

1. Require large number of DNS data (which are not available usually).
2. Require a coarse-grid solver (can be even faster).

3. Cannot give the optimal estimations of statistics in ideal case, 1.e. perfect training.



Outline

* (2) Problem reformulation through functional Liouville flow



What is our goal?

* Obtain good estimations of long-term statistics with simulations only conducted on
coarse grids.

Let’s make it precise!

* A nonlinear (and chaotic) dynamics d;u = Lu,u € H

* S;: the semigroup (of the true dynamics)

* ‘Trajectory’: {S;u}ier.,

 Attractor: Q) € H s.t. L}l_)rglo dist(S(t)u,Q) =0 ,vVu € H.

 Invariant measure y* := lim % ) OT Os(yu dt, (independent of the initial u)

T — o0

e Measure in function space

* Supported on ()
* Statistics: For a functional O, the stat (0) := E,,_,»0(u) = [ o) (du)



What is invariant measure i ?

Stationary solution of a Liouville equation (in function space).

What is the best approximation of i with finite grid?
Pushforward of u* of the filtering (informal).

What are previous methods doing?

Assign a vector field in the reduced space F(H), which always have the
form of a conditional expectation.

Previous method can not give good result in good estimations of statistics
unless the model is trained with a large number of DNS data with which one
can actually directly estimate the statistics. (informal)




Functional Liouville (Measure) Flow
*H=FH)DFH)* u=u+v
 ONB {y;}: F(H) = span{y;:i < d}
» Canonical isometric isomorphism T: u « ¢ € R® N % :u =Y, ¢;y; .
* Denote il := (cq,Cy,...Cq), U = (Cqyqy - )-
* The nonlinear dynamics becomes: % = b(c), b is an inf-dim vector field (function).
* Example: y;: Fourier basis (or sin & cos to avoid complex number)
KS: 0;u +uDu + D?u + D*u = 0, D := 0y, b(c)y = (=k* + k*)cx — ik ¥ yop CiCy -

‘ We start with “particles’ u~ T#py(c).
 Each particle evolves and generates a traj u(t).
* p(c,t): the prob density of u(t)
» [Liouville Eqn] 9,p(c,t) = =V, - (b(c)p(c,t)); p(c,0) = po(c)
* (Denoted as d;p = Lp)



Invariant Measure

e Invariant measure: (Cesaro) limit of p(c, t): p(c, t) = % fot p(c,s)ds.

1
* Eqn for p: 9;p = Lp + ;(P(t) — Po)
» . The density of u* is the solution to Lp = 0! (Denoted as p*)

(usually in weak sense)

Best Approximation in the Filtered Space
Def P: H - F(H) the orthogonal projection. (might be different from F).

[Thm] Pyu™=argmin,ep )W (v, 11°).

The functional Wasserstein distance is defined with cost function ||u; — u,||%.

Note: Pyu™ can also be viewed as the marginal distribution of y* in first d- dim.



Let’s write out the Eqn! (for P*p(c, t))
* pl(ai t) = P#p(C, t)
c 9Py (@) = —Vg - {P (@ O b (@, 0) Lot do |

==Va - (P1(OEs-peian[bi (@ D)]a])
du

* — = Espwjan b1 (@ D)|d] (The ‘optimal’ dynamics in K).

b, (@, D): the first d-dim of b.

Optimal LES

From an probabilistic viewpoint:

* Decompose the fluid field into resolved part(in coarse grid) and unresolved part:
eg. RP=RI*xRP-AorH=FH)PFH)*': u=u+v

* The distribution of u a joint distribution of (u, v).

* In LES setting, given u, what is the best choice for vector field/closure term?

* Conditional Expectation!

* The optimal closure model is E[L(u)|u]

(**) Expectation w.1.t. which distribution?



Let’s write out the Eqn! (for P*p(c, t))
* p1(@,t) = PPp(c,t)
c 9P (@) = Vg [ @, 0O [by(@9) 2] do |

:—Vﬁ . (pl(t)Ei}fvp(ﬂﬁ,t) [bl (ﬁ' ﬁ)lﬁ])

= E5pesan b1 (@, D)[t] (The ‘optimal’ dynamics in K).

. 3
dt
It is irresolvable!
The p(¥|1, t) depends on t and initial condition/density, and an (evolving) distribution

in F(H)*, but at the point Tl € F(H), or more generally (T4, ty) € K X [0, ), ]
don’t know what is happening in K+ and what happened t’ seconds ago!

The only performable action is to compute conditional expectation )

w.r.t an fixed distribution q(c) € P (H). @ﬁ@



Let’s write out the Eqn! (for P*p(c, t))

The only performable action 1s to compute conditional expectation
w.r.t an fixed distribution q(c) € P(H).
Z—f = Ep—q@|b1 (@, D)|@] (The surrogate dynamics in K).

Write out the Liouville equation in reduced space K: d,p, (1, t) = ﬁqpl (i,t)
Limit distribution: ﬁqpl =0

[Basic Requirement: Consistency]: £L,p; = 0. (Faithfully recover the optimal measure)
q qP1

The choice for q(c): p*(c).

A

* The ideal and realistic closure model: % = E5p* b1 (4, D) |1]



: o o du A
Previous Methods Revisit  Ideal: - = E;_p () [b1 (2, D) |2]
Closure model et = By ity oy [L(u + V) [u]

»[LES]: Evolve d;u = Lu + clos(u; 8)

Handeraft Modal* ‘ Not Expressive Enough?

Sub-grid Stress (SGS) model (at most 11parameter)
I earned Model- ‘ [Fact] Minimizing || - ||g-loss is
(1)Fix an ansatz clos(u; 8) eqUivalent to ChOOSing q = Pdata (u: U)

(2) Supervised loss: ||(FL — LF)u — clos(Fu; 9)||

[Paradox] p™ is inf-dim in nature, so approximating it with sampling is very costly!
(1) The DNS data suffices to approximate p* well: no longer need LES!

(2) The DNS data is not enough: p4¢4 1s far from p*, thus the limit distribution could
be rather fallacious!



Previous Methods Revisit

What about random sampling method?

Neural Ideal Large Eddy Simulation: Modeling
Turbulence with Neural Stochastic Differential
Equations

The evolution of the ideal LES field v is obtained from the time derivatives of the set of unfiltered
turbulent fields whose large scale features are the same as v [48]:
du u

a | ot
Idea: Train a generative model (via an SDE in latent space)

ﬁ:!:] (7

1. Given u, sample v, or equivalently, u .
2. Compute conditional expectation.

» Write out the PDE of density evolution

(Fokker-Planck this time)

» Unfortunately...
»[Thm] It could never recover p* or p;

unless the stochastic term in SDE is 0! (i.e.
It’s a deterministic method).



Outline

* (3) Physics-Informed Neural Operator(PINO)



Modg¢l Architecture of FNO

®—> Fourier layer 1 —){Fourier layer 2> @ @ @ —»{Fourier layer T

________

(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel space
by a neural network P. 2. Apply four layers of integral operators and activation functions. 3. Project back to
the target dimension by a neural network (). Output «. (b) Fourier layers: Start from input v. On top: apply
the Fourier transform F; a linear transform I? on the lower Fourier modes and filters out the higher modes;
then apply the inverse Fourier transform 7~ '. On the bottom: apply a local linear transform W.

grNnoO = QO(WL+]CL)O---OJ(W1+]C1)OP, (7)

where P and Q are pointwise lifting and projection operators. The intermediate layers consist
of an activation function o, pointwise operators W, and integral kernel operators K, : u —
Z YRy -.Z(u)), where Ry are weighted matrices and .% denotes Fourier transform.



What makes FNO different?

Notation:
»> (!N Resolution Invariant! I,:H —> R"

» Long time-ste ction. u(x) - (u(xl), u(x,), ... u(xn))
Function values on grids.

» The input could be either on coarse grids or fine grids (= function)

»[Thm] Suppose we have trained a perfect neural operator, then it could
recover the optimal approximation of invariant measure, i.e. p; = P*p*

Key Insights:

* Neural operator G(u, 8): u(x, ty) — u(x, ty + h) (or {u(x, t)}tefey to+n] )

* An perfect NO: If input is a function u € H, then G(u) = S,u

* What happens if the input 1s U = [,u (functions represented on coarse grid)?

e There existsu’ € H,s.t. L,u' = U,L,(S,u’) = G(U). (From FNO architecture)
e u* does not depends on trajectories!



How to obtain a perfect FNO?

[Fact] For any non-vanishing y € P(H), if E\, ., £pp £(G(w)) = 0, then
G is a perfect FNO, where the PDE loss #(u) = ||(0; — L)ul|%

Remarks:
* Does not depend on data distribution
* Does not rely on DNS(ground truth) data.

In practice, it 1s hard to achieve 0-loss.
[Thm] For Ve > 0,36 > 0, s.t. if |G(u) — Spu| < §,Vu € H,

*x A A . 1
then W, (p1,01) < €. Py = 1\!11—%0&2%“ O6™ (Iyw)-



Practical Algorithm

|[Fact] For any non-vanishing y € P(H), if E;, ., £pp g(G(w)) =0, thenG is a
perfect FNO, where the PDE loss £(u) = ||(8,; — L)ul|4

Remarks:

* PDE-loss is super hard to optimize!

* Solution: find a good initialization with the help of data.

[Algorithm]

» Supervised learning with LES data.

» Supervised learning with DNS data (very few).
»Minimizing the PDE loss function.
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* (4) Results and Discussion



1D Kuramoto—Sivashinsky (toy test example)
8tu . uazu T a.z:..':u + Va.L.L.L.Lu = 0: (IE, t) € [0: 677] X R+,

* Viscosity: 0.01 L: é6m

* DNS: 1024 spatial grid

* LES: 128 spatial grid

* Note: baseline methods are trained with the same number of DNS data as ours.

Method Avg. Eng. Max Eng. Avg. Cor. Max Cor. Velocity Avg. TV Max TV

CGS (Noclosure) 12.5169% 77.8223% 13.1275% 80.5793% 0.0282 0.0398 0.2097
Eddy-Viscosity [57] 7.6400% 48.3684% 8.7583% 56.5878% 0.0276 0.0282 0.1462
Single-state [28] 12.5323% 78.6410% 13.1052% 81.2461% 0.0280 0.0410 0.2111

Our Method 7.4776% 20.4176% 7.8706% 22.7046% 0.0284 0.0272 0.0849

Energy Spectrum  Correlation Velocity  Total Variation of each mode



2D Kolmogorov Flow (toy test example)
2
Re
* Reynolds number: 100 L: 2x

* DNS: 128*128 spatial grid

* LES: 16*16 spatial grid

* Note: baseline methods are trained with the same number of DNS data as ours.

Method Avg. Eng. Max Eng. Vorticity Avg. TV Max TV  Variance

CGS (No closure) 178.4651% 404.9923% 0.1512 0.4914 0.8367 253.4234%
Smagorinsky [14] 52.9511% 120.0723% 0.0483 0.2423 09195 20.1740%
Single-state [28] 205.3709% 487.3957% 0.1648 0.5137 0.8490 298.2027%

Our Method 5.3276% 8.9188% 0.0091 0.0726 0.2572 2.8666%

du=—(u-V)u—Vp+ —Au+ (sin(4y),0)f, V.-u=0, (z,9,t)€][0,L)* xR,

Energy Spectrum Vorticity  Total Variation of each mode



Energy Spectual Dissipation
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Summary

»[Closure Model]: Evolve 0;,u = Lu + clos(u; 0)

* [Operator Learning]

* New scheme: Evolve d;u = L(0)u

* Where 1s the missing information (error correcting term)?
-They (their effects) are incorporated in the model.

* Intuition: the error-correcting term is implicitly involved in the simulation.



Thanks!



