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Chaotic Systems

Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?
Small (numerical) error explodes along time!

• Long-term behavior/ statistics is of great practical importance in applications.
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[Notations]
• A nonlinear (and chaotic) dynamics ௧

• ௧ the semigroup (of the true dynamics)

• ‘Trajectory’: ௧ ௧∈ோಱబ
  

• Attractor: 
௧→ஶ

• Invariant measure ∗

்→ஶ

ଵ

் ௌ ௧ ௨
்


(independent of the initial )

• Measure in function space

• Supported on 

• Statistics: For a functional the stat ௨∼ఓ∗
∗

Problem Setting

The Goal of this Project.



Outline

• (1) Review: data-driven closure models (& their inherent shortcomings)

• (2) New insight through Measure flow in function space

• (3) Our approach: Physics-informed Neural Operator



• Filtering operator , e.g. spatial down sampling, Fourier-mode truncation.
(Simulations with coarse grids)

Coarse-grid Simulations

Nonlinear dynamics: ௧ ( function space of interest)

Dynamics for : ௧

(nonlinear system F and L does not commute)

Simulating on low-res grids (the space of ) no access to

[Closure Model]: Evolve ௧



Existing Data-driven Closure Models

[CGS]: Evolve ௧

Learned Model:

(1)Fix an ansatz 

(2) Supervised loss: 

(3*) More complex version:

Training data : comes from costly 
Fully-Resolved simulations
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Existing Data-driven Closure Models

[CGS]: Evolve ௧

Learned Model:

(1)Fix an ansatz 

(2) Supervised loss: 

(3*) More complex version:

History-aware models: 

Stochastic models

Different loss functions

Training data : comes from costly 
Fully-Resolved simulations
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[Closure Model]: Evolve ௧

• [Result 1] The target mapping is not well-defined for all types of ansatz in 
the literature. (There are multiple possible outputs for the same input.) 

• [Result 2] Following this scheme (directly adding a closure term), the model has to 
be trained with a large amount of fully-resolved data that suffices to compute the 
statistics.

We no longer need such a model!



(1) This is not a well-defined mapping.

(2) The resulting coarse-grid simulation might deviate from the filtered attractor. 

(And the performance highly depends on the training data)
! We can only assign one moving direction in the reduced space F(H).



Theoretical Intuition

[FRS(ground truth)] ௧

[CGS]: Evolve ௧

• Functions(states) : infinite-dimensional particle systems in .

• Only need to care about distributions (the invariant measure)

Liouville flow/ Fokker-Planck equations for measure transformations.

௧

• The invariant measure is the solution to stationary Liouville/Fokker-Planck 
equation!
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[Previous Scheme]: Evolve ௧

Why do we have to adopt this form?

• New scheme: Evolve ௧

• Intuition: the error-correcting term is implicitly involved in the simulation.



(Fourier) Neural Operator

The input can be either course-grid or fine-grid.



• New scheme: Evolve ௧

• Intuition: the error-correcting term is implicitly involved in the simulation.

[Method]

• Physics-informed Neural Operator

• Provable convergence guarantee for statistics.

Much fewer DNS data needed Ansatz for 
Merit: resolution invariance

Physics-informed loss function:



1. Require large number of DNS data (which are not available usually).

2. Require a coarse-grid solver (can be even faster).

3. Cannot give the optimal estimations of statistics in ideal case, i.e. perfect training.

Summary

Re: Reynolds number



1D Kuramoto–Sivashinsky (toy test example)

• Viscosity: 0.01     L: 

• DNS: 1024 spatial grid

• LES: 128 spatial grid

• Note: baseline methods are trained with the same number of DNS data as ours.

Energy Spectrum Correlation           Velocity     Total Variation of each mode



2D Kolmogorov Flow (toy test example)

• Reynolds number: 100     L: 

• DNS: 128*128 spatial grid

• LES: 16*16 spatial grid

• Note: baseline methods are trained with the same number of DNS data as ours.

Energy Spectrum Vorticity     Total Variation of each mode





Summary

Takeaway: We need to ensure a well-defined target mapping before any ‘learning’.

See more details in https://arxiv.org/pdf/2408.05177



Thanks!


