Closure Models:

haotic-Systems via

ned Neural Operators

Chuwei Wang

Caltech

Merner Zongyi Li Di Zhou Jiavun Wang Learning Chaotic-Systems via

sics-Informed Neural Operators

Chuwei Wang

Caltech

Joint work with Julius Berner, Zongyi Li, Di Zhou, Jiayun Wang,

Jane Bae, and Anima Anandkumar

LAIFI Summer Workshop Beyond Closure Models: Learning Chaotic-Systems via Physics-Informed Neural Operators

Caltech

Jane Bae, and Anima Anandkumar

IAIFI Summer Workshop (A) Caltech 2024.8.12

Chaotic Systems
Does the flap of a butterfly's wings in Brazil se Does the flap of a butterfly's wings in Brazil set off a tornado in Texas?

Small (numerical) error explodes along time!

• Long-term behavior/ statistics is of great practical importance in applications.

Climate Modeling **Aircraft** Design

Chaotic Systems
Does the flap of a butterfly's wings in Brazil se Does the flap of a butterfly's wings in Brazil set off a tornado in Texas? Small (numerical) error explodes along time! **haotic Systems**
 haotic Systems
 order than the Small (numerical) error explodes along time!
 **Long-term behavior/statistics is of great practical importan

Method 1: Fully-Resolved Simulations (FRS): simulat

meshes/**

- Long-term behavior/ statistics is of great practical importance in applications.
- Chaotic Systems

Does the flap of a butterfly's wings in Brazil set off a tornado in Texas?

Small (numerical) error explodes along time!

 Long-term behavior/ statistics is of great practical importance in applications. Chaotic Systems

Does the flap of a butterfly's wings in Brazil set off a tornado in Texas?

Small (numerical) error explodes along time!

• Long-term behavior/ statistics is of great practical importance in applications.

Chaotic Systems
Does the flap of a butterfly's wings in Brazil se Does the flap of a butterfly's wings in Brazil set off a tornado in Texas? Small (numerical) error explodes along time!

- Long-term behavior/ statistics is of great practical importance in applications.
- Chaotic Systems

Does the flap of a butterfly's wings in Brazil set off a tornado in Texas?

Small (numerical) error explodes along time!

 Long-term behavior/ statistics is of great practical importance in applications.
- **haotic Systems**
 haotic Systems
 order than the Small (numerical) error explodes along time!
 **Long-term behavior/statistics is of great practical importan

Method 1: Fully-Resolved Simulations (FRS): simula

meshes/g** Chaotic Systems

Does the flap of a butterfly's wings in Brazil set off a tornado in Texas?

Small (numerical) error explodes along time!

• Long-term behavior/ statistics is of great practical importance in applications.

Problem Setting
[Notations]
A conlinear (and shortic) dynamics $\partial u = Iu, u, d$

[Notations]

- A nonlinear (and chaotic) dynamics $\partial_t u = Lu, u \in H$
- S_t : the semigroup (of the true dynamics)
- 'Trajectory': $\{S_t u\}_{t \in R_{\geq 0}}$
- Attractor: $\Omega \subset H$ s. $t\rightarrow\infty$
- Invariant measure $\mu^* \coloneqq \lim_{\pi \to 0} \frac{1}{\pi} \int_0^1 \delta_{S(t)}$ $T\rightarrow\infty$ $T^{J}0$ $J(t)u$ T^{J} T^{J} ଵ $T^{J}0^{-5}$ $(t)u$ as respectively $\partial_t u = Lu, u \in H$
nics)
 $(u, \Omega) = 0$, $\forall u \in H$.
 $s(t)u dt$, (independent of the initial u) $T_{\mathcal{S}}$ and \mathcal{I} is denoted $\int_0^1 \delta_{S(t)u} dt$, (independent of the initial u)
	- Measure in function space
	- Supported on Ω
- Statistics: For a functional *O*, the stat $\langle 0 \rangle = E_{u \sim \mu^*} O(u) = \int O(u) \mu^*(du)$

The Goal of this Project.

Outline

- (1) Review: data-driven closure models (& their inherent shortcomings)
- (2) New insight through Measure flow in function space
- (3) Our approach: Physics-informed Neural Operator

Coarse-grid Simulations
• Filtering operator $F: u \to \bar{u}$, e.g. spatial down sampling,

• Filtering operator $F: u \to \overline{u}$, e.g. spatial down sampling, Fourier-mode truncation. (Simulations with coarse grids) (down sampling, Fourier-mode truncation.)

mulations with coarse grids)

(*H*: function space of interest)
 LF)**u**.

does not commute)

Darse-grid Simulations

Filtering operator $F: u \to \bar{u}$, e.g. spatial down sam

(Simulations v

Nonlinear dynamics: $\partial_t u = Lu, u \in H$ (*H*: function)

> Dynamics for $\bar{u}: \partial_t \bar{u} = L\bar{u} + (FL - LF)u$.

(nonlinear system F and L

Darse-grid Simulations

Filtering operator $F: u \to \bar{u}$, e.g. spatial down samp.

(Simulations wii)

Nonlinear dynamics: $\partial_t u = Lu$, $u \in H$ (*H*: functior

> Dynamics for $\bar{u}: \partial_t \bar{u} = L\bar{u} + (FL - LF)u$.

(nonlinear system **e-grid Simulations**

g operator $F: u \to \bar{u}$, e.g. spatial down sampling, Fourier-mode truncation.

(Simulations with coarse grids)

ear dynamics: $\partial_t u = Lu, u \in H$ (*H*: function space of interest)

mics for $\bar{u}: \partial_t \bar{u} =$ **Simulations**

Filtering operator $F: u \to \bar{u}$, e.g. spatial down sampling, Fourier-mode truncation.

(Simulations with coarse grids)

Nonlinear dynamics: $\partial_t u = Lu, u \in H$ (*H*: function space of interest)
 \triangleright Dynamics f Filtering operator $F: u \to \bar{u}$, e.g. spatial down sampling, For

(Simulations with coarse

Nonlinear dynamics: $\partial_t u = Lu$, $u \in H$ (*H*: function space c

>Dynamics for $\bar{u}: \partial_t \bar{u} = L\bar{u} + (FL - LF)u$.

(nonlinear system F an

Existing Data-driven Closure Models
 $\geq [CSS]$: Evolve $\partial_t u = Lu + clos(u; \theta)$ **Existing Data-driven Closure M**
 \geq [CGS]: Evolve $\partial_t u = Lu + clos(u; \theta)$

Learned Model:

Learned Model:

(1)Fix an ansatz $clos(u; \theta)$ (2) Supervised loss: $||(FL - LF)u - clos(Fu; \theta)||$ (3*) More complex version:

 $\mathbf{clos}: H(R^3) \rightarrow H(R^3)$

Training data \boldsymbol{u} : comes from costly Fully-Resolved simulations

Existing Data-driven Closure Models
 $\geq [CSS]$: Evolve $\partial_t u = Lu + clos(u; \theta)$ **Existing Data-driven Closure M**
 \geq [CGS]: Evolve $\partial_t u = Lu + clos(u; \theta)$

Learned Model:

Learned Model:

(1)Fix an ansatz $clos(u; \theta)$ (2) Supervised loss: $||(FL - LF)u - clos(Fu; \theta)||$ (3*) More complex version: History-aware models:

 $\mathbf{clos}: H(R^3) \to H(R^3)$

Training data \boldsymbol{u} : comes from costly Fully-Resolved simulations

$$
\mathbf{clos}: H(R^3 \times [0, t')) \to H(R^3)
$$

$$
u(x, t), x \in D, t \in [t_0 - t', t_0) \to clos(u)(x, t_0)
$$

Stochastic models Different loss functions

- >[Closure Model]: Evolve $\partial_t \bar{u} = L\bar{u} + clos(\bar{u}; \theta)$)
• [Result 1] The target mapping $clos(u)$ is not well-define the literature. (There are multiple possible outputs for the • [Result 1] The target mapping $\text{clos}(u)$ is not well-defined for all types of ansatz in the literature. (There are multiple possible outputs for the same input.)
- [Result 2] Following this scheme (directly adding a closure term), the model has to be trained with a large amount of fully-resolved data that suffices to compute the statistics.

We no longer need such a model!

(And the performance highly depends on the training data)

! We can only assign one moving direction in the reduced space $F(H)$.

Theoretical Intuition
 \triangleright [FRS(ground truth)] $\partial_t u = Lu$

- **Cheoretical Intuition**
 $\geq [\text{FRS}(\text{ground truth})] \partial_t u = Lu$
 $\geq [\text{CGS}]$: Evolve $\partial_t u = Lu + clos(u; \theta)$

 Functions(states) u : infinite-dimensional particle sy-**Cheoretical Intuition**
 $\sum [\text{FRS}(\text{ground truth})] \partial_t u = Lu$
 $\sum [\text{CGS}]$: Evolve $\partial_t u = Lu + clos(u; \theta)$

• Functions(states) u : infinite-dimensional parti

• Only need to care about distributions (the inva • Functions(states) $u:$ infinite-dimensional particle systems in H .
- Only need to care about distributions (the invariant measure) Liouville flow/ Fokker-Planck equations for measure transformations.

 $\partial_t \rho = -\nabla \cdot (f \rho)$

• The invariant measure is the solution to stationary Liouville/Fokker-Planck equation!

Outline

- (1) Review: data-driven closure models (& their shortcomings)
- (2) Insight through Measure flow in function space
- (3) Our approach: Physics-informed Neural Operator

\blacktriangleright [Previous Scheme]: Evolve $\partial_t \bar{u} = L \bar{u} + clos(\bar{u}; \theta)$
Why do we have to adopt this form? \blacktriangleright [Previous Scheme]: Evolve $\partial_t \bar{u} = L\bar{u} + clos(\bar{u}; \theta)$
 Why do we have to adopt this form?

New scheme: Evolve $\partial_t \bar{u} = L(\theta) \bar{u}$

- New scheme: Evolve $\partial_t \overline{u} = L(\theta) \overline{u}$
- Intuition: the error-correcting term is implicitly involved in the simulation.

(a) The full architecture of neural operator: start from input a . 1. Lift to a higher dimension channel space by a neural network P. 2. Apply four layers of integral operators and activation functions. 3. Project back to the target dimension by a neural network Q . Output u . (b) Fourier layers: Start from input v . On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes and filters out the higher modes; then apply the inverse Fourier transform \mathcal{F}^{-1} . On the bottom: apply a local linear transform W.

Figure 2: top: The architecture of the neural operators; bottom: Fourier layer.

 $\mathcal{G}_{FNO} := \mathcal{Q} \circ (W_L + \mathcal{K}_L) \circ \cdots \circ \sigma(W_1 + \mathcal{K}_1) \circ \mathcal{P},$

The input can be either course-grid or fine-grid.

- New scheme: Evolve $\partial_t \overline{u} = L(\theta) \overline{u}$
- Intuition: the error-correcting term is implicitly involved in the simulation. [Method]
- Physics-informed Neural Operator

Much fewer DNS data needed Ansatz for $L(\theta)$

Merit: resolution invarianc

Physics-informed loss function:

$$
J_{pde}(\theta;\mathfrak{D})=\frac{1}{|\mathfrak{D}|}\sum_{i\in\mathfrak{D}}\|(\partial_t-\mathcal{A})\mathcal{G}_{\theta}u_{0i}(x)\|_{L^2(\Omega\times[0,h]}
$$

• Provable convergence guarantee for statistics.

Theorem 3.1. For any $h > 0$, denote $\hat{\mu}_{h,\theta} := \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \delta_{\mathcal{G}_{\theta}^{n} v_0(x)},$ any $v_0(x)$ with $x \in D'$. For any $\epsilon > 0$, there exists $\delta > 0$ s.t. as long as $\|(\mathcal{G}_{\theta}u)(\cdot, h) - S(h)u\|_{\mathcal{H}} < \delta, \forall u \in \mathcal{H}$, we have $W_H(\hat{\mu}_{h,\theta}, \mathcal{F}_{\#}\mu^*) < \epsilon$, where W_H is a generalization of Wasserstein distance in function space.

Summary

Re: Reynolds number

-
-
-

1D Kuramoto–Sivashinsky (toy test example)
 $\partial_t u + u \partial_x u + \partial_{xx} u + \nu \partial_{xxxx} u = 0, \quad (x, t) \in [0, 6\pi] \times \mathbb{R}_+,$

- Viscosity: 0.01 L: 6π
- DNS: 1024 spatial grid
- LES: 128 spatial grid
- Note: baseline methods are trained with the same number of DNS data as ours.

2D Kolmogorov Flow (toy test example)
\n
$$
\partial_t \mathbf{u} = -(\mathbf{u} \cdot \nabla)\mathbf{u} - \nabla p + \frac{1}{Re} \Delta \mathbf{u} + (\sin(4y), 0)^T, \quad \nabla \cdot \mathbf{u} = 0, \quad (x, y, t) \in [0, L]^2 \times \mathbb{R}_+,
$$

- Reynolds number: 100 L: 2π
- DNS: 128*128 spatial grid
- LES: 16*16 spatial grid
- Note: baseline methods are trained with the same number of DNS data as ours.

Summary

Takeaway: We need to ensure a well-defined target mapping before any 'learning'. See more details in https://arxiv.org/pdf/2408.05177

Thanks!