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Chaotic Systems

Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?

Small (numerical) error explodes along time!

* Long-term behavior/ statistics is of great practical importance in applications.
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'Closure model’



Problem Setting
[Notations]

* A nonlinear (and chaotic) dynamics d;,u = Lu,u € H

* S;: the semigroup (of the true dynamics)

* ‘Trajectory’: {S;u}ier.,

» Attractor: ) € H s.t. tll_)l’g dist(S(t)u,Q) =0 ,Vu € H.

: . T . L
* Invariant measure u* := Tllm % fo Osu dt, (independent of the initial u)

* Measure in function space

 Supported on ()
* Statistics: For a functional O, the stat (0) := E;,_,»0(u) = [ o) (du)

\ The Goal of this Project.



Outline

* (1) Review: data-driven closure models (& their inherent shortcomings)
* (2) New 1nsight through Measure flow in function space
* (3) Our approach: Physics-informed Neural Operator



Coarse-grid Simulations

* Filtering operator F:u — u, e.g. spatial down sampling, Fourier-mode truncation.
(Simulations with coarse grids)

Nonlinear dynamics: d;u = Lu,u € H (H: function space of interest)
»Dynamics for u: 0;u = Lu + (FL — LF)u.
(nonlinear system F and L does not commute)

» Simulating on low-res grids (the space of F(H)) no access to u.
»[Closure Model]: Evolve 0, = Lu + clos(u; 0)



Existing Data-driven Closure Models

»[CGS]: Evolve 0,u = Lu + clos(u; 6)

clos: H(R3) -» H(R?)
Learned Model:
(1)Fix an ansatz clos(u; 0) Training data u : comes from costly
(2) Supervised loss: ||(F L — LF)u — clos(Fu;0) || Fully-Resolved simulations

(3*) More complex version:
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clos: H(R3) -» H(R?)

Learned Model:
(1)Fix an ansatz clos(u; 0) Training data u : comes from costly
(2) Supervised loss: ||(F L — LF)u — clos(Fu;0) || Fully-Resolved simulations

(3*) More complex version:

History-aware models:
clos: H(R3 x [0,t")) » H(R?)
u(x,t),x € D,t € [ty —t', ty) — clos(u)(x,ty)

Stochastic models

Different loss functions



»[Closure Model]: Evolve d;u = Lu + clos(u; 0))

* [Result 1] The target mapping clos(u) is not well-defined for all types of ansatz in
the literature. (There are multiple possible outputs for the same input.)

* [Result 2] Following this scheme (directly adding a closure term), the model has to
be trained with a large amount of fully-resolved data that suffices to compute the

statistics.
= We no longer need such a model!
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(1) This is not a well-defined mapping.
(2) The resulting coarse-grid simulation might deviate from the filtered attractor.
(And the performance highly depends on the training data)

! We can only assign one moving direction in the reduced space F(H).



Theoretical Intuition

»[FRS(ground truth)] d;u = Lu

»[CGS]: Evolve 0,u = Lu + clos(u; 0)

* Functions(states) u : infinite-dimensional particle systems in H.

* Only need to care about distributions (the invariant measure)
Liouville flow/ Fokker-Planck equations for measure transformations.
Ocp ==V - (fp)

* The invariant measure 1s the solution to stationary Liouville/Fokker-Planck
equation!



Outline

* (3) Our approach: Physics-informed Neural Operator



»[Previous Scheme]: Evolve d,u = Lu + clos(u; 0)
Why do we have to adopt this form?

* New scheme: Evolve d;u = L(0)u

* Intuition: the error-correcting term is implicitly involved in the simulation.



(Fourier) Neural Operator

®—> Fourier layer 1 Fourier layer 2

> @ @ @ —»|Fourierlayer T

Fourier layer

(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel space
by a neural network P. 2. Apply four layers of integral operators and activation functions. 3. Project back to
the target dimension by a neural network Q. Output u. (b) Fourier layers: Start from input v. On top: apply
the Fourier transform J; a linear transform R on the lower Fourier modes and filters out the higher modes;
then apply the inverse Fourier transform F~'. On the bottom: apply a local linear transform W

Figure 2: top: The architecture of the neural operators; bottom: Fourier layer.

Grno :=Qo (WL +Kp)o---0a(W; + K1) 0P,

The input can be either course-grid or fine-grid.



* New scheme: Evolve d;,u = L(0)u
* Intuition: the error-correcting term is implicitly involved in the simulation.
[Method]

* Physics-informed Neural Operator

l l Physics-informed loss function:

Jpde(0; D) (0 — A)Gouoi (z)| L2 (x[0,n
Much fewer DNS data needed Ansgtz for L(Q) : , g ZEZ@ . el
Merit: resolution invarianc .

* Provable convergence guarantee for statistics.

N
Theorem 3.1. For any h > 0, denote fip, g := lim = Z G vy (z)s any vo(xz) with x € D'. For

N =00

any € > 0, there exists § > 0 s.t. as long as ||(ggu)( h) — S(h)ully < 6,Yu € H, we have
Wi (fin.g, Fup™) < €, where Wy is a generalization of Wasserstein distance in function space.



Summary

Optimal High-res. training data ;
bethes statistics  DNS Snapshots | Trajs. Conplexity
Fully-resolved Simulation, e.g., DNS [33, 34] v/ 5 Re3-52
Coarse-grid Simulation, e.g., LES |33, 34] X - Re248
Single-state model |28] X 24000 | 8 Re2-48
History-aware model|35] X 250000 | 50 Re248
Latent Neural SDE|32] X 179200 | 28 + Rel 86
Physics-Informed Operator Learning (Ours) v 110 | 1 Rel-86

Re: Reynolds number

1. Require large number of DNS data (which are not available usually).
2. Require a coarse-grid solver (can be even faster).

3. Cannot give the optimal estimations of statistics in ideal case, 1.e. perfect training.



1D Kuramoto—Sivashinsky (toy test example)
8tu . uazu T a.z:..':u + Va.L.L.L.Lu = 0: (IE, t) € [0: 677] X R+,

* Viscosity: 0.01 L: é6m

* DNS: 1024 spatial grid

* LES: 128 spatial grid

* Note: baseline methods are trained with the same number of DNS data as ours.

Method Avg. Eng. Max Eng. Avg. Cor. Max Cor. Velocity Avg. TV Max TV

CGS (Noclosure) 12.5169% 77.8223% 13.1275% 80.5793% 0.0282 0.0398 0.2097
Eddy-Viscosity [57] 7.6400% 48.3684% 8.7583% 56.5878% 0.0276 0.0282 0.1462
Single-state [28] 12.5323% 78.6410% 13.1052% 81.2461% 0.0280 0.0410 0.2111

Our Method 7.4776% 20.4176% 7.8706% 22.7046% 0.0284 0.0272 0.0849

Energy Spectrum  Correlation Velocity  Total Variation of each mode



2D Kolmogorov Flow (toy test example)
2
Re
* Reynolds number: 100 L: 2x

* DNS: 128*128 spatial grid

* LES: 16*16 spatial grid

* Note: baseline methods are trained with the same number of DNS data as ours.

Method Avg. Eng. Max Eng. Vorticity Avg. TV Max TV  Variance

CGS (No closure) 178.4651% 404.9923% 0.1512 0.4914 0.8367 253.4234%
Smagorinsky [14] 52.9511% 120.0723% 0.0483 0.2423 09195 20.1740%
Single-state [28] 205.3709% 487.3957% 0.1648 0.5137 0.8490 298.2027%

Our Method 5.3276% 8.9188% 0.0091 0.0726 0.2572 2.8666%

du=—(u-V)u—Vp+ —Au+ (sin(4y),0)f, V.-u=0, (z,9,t)€][0,L)* xR,

Energy Spectrum Vorticity  Total Variation of each mode



Energy Spectual Dissipation
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Summary

Takeaway: We need to ensure a well-defined target mapping before any ‘learning’.

See more details in https://arxiv.org/pdf/2408.05177



Thanks!



