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1. Introduction



Preliminary: Partial Differential Equation

Partial Differential Equation (PDE) is a ubiquitous tool in 
mathematical modeling of physics, control, and finance.

• Solving PDE is important for understanding these systems.

• Designing an accurate and efficient PDE solver is very challenging.



Formulation of Partial Differential Equation

Partial Differential Equation involves an unknown multi-variable 
function u(x) and partial derivatives of the unknown function.

: partial differential operator.
: boundary condition.



PINN: solving PDE with deep learning

Physics-informed Neural Networks (PINN):

• Solving PDE as a function approximate problem.

• Training an NN to express the PDE solution with L2 

Physics-Informed Loss.

Neural Network: with as the input and as the parameters.



PINN is straightforward and successful. 

Can we use it to solve high-dimensional PDEs?

• Conventional methods fail due to the 
curse of dimensionality.

• Neural networks do well in representing 
high-dimensional mappings.



PINN is straightforward and successful. 

Can we use it to solve high-dimensional PDEs?

• PINN’s accuracy is not satisfactory on 
high-dimensional non-linear PDEs. 
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2. Definition of Stability



Theoretical Analysis for the Validity of PINN

• PINN uses L2 Physics-Informed Loss by default.
Zero Training Loss Learned solution is exactly accurate

• But practically we only obtain small but non-zero losses.

Does a learned solution with a small loss always 
corresponds to a good approximator of the exact solution?



A closer look at the learned solution

A learned solution is the solution to a perturbed PDE:

The scale of the perturbation can be characterized by the 
Physics-Informed Loss:



Stability of PDEs

The accuracy of PINN is closely related to the stability of PDE.

In PDE literature, we say an equation is stable if the solution of 
the perturbed PDE converges to the exact solution as the 
perturbations approach zero (measured by certain norm).

Approximation Ground truth



Stability of PDEs

[Definition] We say a PDE is -stable, if

as                                                                 , where are 
three Banach spaces and u* is the exact solution.

• Loss functions corresponding to 
భ
and 

మ
help to 

obtain that is provably close to the exact solution. 



Stability of PDEs

[Definition] We say a PDE is -stable, if

as                                                                 , where are 
three Banach spaces and u* is the exact solution.

• PINN training with L2 Physics-Informed Loss is suitable only 
when a PDE is (L2, L2, Z)-stable for some Banach space Z.
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3. Bounds on the Stability of PINN for HJB Equation



[Theorem1] (informal) A large class of n-dimensional HJB Equation 
is (Lp, Lq, W1,1)-stable if p>n, q>kn ( depends on the equation).

[Theorem2] (informal) A large class of n-dimensional HJB Equation 
is not (Lp, Lq, W1,1)-stable if p<n/4.

HJB Equation: Hamilton-Jacobi-Bellman Equation
• The class of PDE we study is representative in high-dimensional non-linear PDEs. 

Power-law trading cost in optimal execution problem, Linear-Quadratic-Gaussian 
control and Merton’s portfolio model are all special cases of this form.

• We consider ଵ,ଵ-stability here because both and is important in application.



Theoretical analysis

[Theorem1] (informal) A large class of n-dimensional HJB 
Equation is (Lp, Lq, W1,1)-stable if p>n, q>kn (k depends on the 
equation).



Theoretical analysis

O O

[Theorem1] (informal) A large class of n-dimensional HJB 
Equation is (Lp, Lq, W1,1)-stable if p>n, q>kn (k depends on the 
equation).



Theoretical analysis

[Theorem2] (informal) A large class of n-dimensional HJB 
Equation is not (Lp, Lq, W1,1)-stable if p<n/4.



Theoretical analysis

[Theorem2] (informal) A large class of n-dimensional HJB 
Equation is not (Lp, Lq, W1,1)-stable if p<n/4.

• Set , then Sobolev norm becomes -norm.

• The distance between and , and could be 
arbitrarily large even though the is small!



Empirical results (100-dimensional HJB )

• loss drops very quickly, while relative error remains high.
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4. New Algorithm for High Dimensional HJB Equation



Recap: theoretical analysis

L2 Loss is not suitable for high-dimensional HJB Equation.

Loss (p>>1 or ) can be a better choice!

[Theorem1] (informal) A large class of n-dimensional HJB 
Equation is (Lp, Lq, W1,1)-stable if p>n, q>kn ( depends on the 
equation).
[Theorem2] (informal) A large class of n-dimensional HJB 
Equation is not (Lp, Lq, W1,1)-stable if p<n/4.



Experiments: Naïvely minimizing Lp loss 

• Naïvely minimizing Lp loss with large but finite p does not lead 
to satisfactory results.



Experiments: Naïvely minimizing Lp loss 

• Naïvely minimizing Lp loss with large but finite p does not lead 
to satisfactory results.

• Possible reasons: 

Large 
Large MC variance

Stiff landscape

Sampling inefficiency

Optimization difficulty

=1 =2 =5 =20



Minimizing L∞ Physics-Informed Loss

New training objective: L∞ Physics-Informed Loss

Algorithm: adversarial-training-like min-max optimization.

• Inner loop: gradient-based methods to obtain data points with 
large point-wise loss to approximate supremum.

• Outer loop: fix the generated data points and calculate the 
gradient g to learn the network parameters.



L∞ training for Physics-Informed Neural Networks

3-7:computing 
supremum 
（gradient ascend 
for data points）

8-9: optimization
(gradient descent for 
NN parameters)



Experiments: High-dimensional HJB Equation

10x more accurate compared with baseline methods!



Experiments: High-dimensional HJB Equation

• Visualization of the learned solution of PINN and our method.



Experiments: High-dimensional HJB Equation

• Visualization of the gradient norm of the learned solution of 
PINN and our method.
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5. Conclusion & Future Direction



Conclusion

• In our work, we prove that for general loss function, it is 

suitable for high dimensional HJB equation only if is 

sufficiently large.

• Based on the theoretical results, we propose a novel PINN 

training algorithm to minimize the loss for HJB equation in 

a similar spirit to adversarial training.



Thanks!

paper can be found at https://arxiv.org/abs/2206.02016


